Dynamics with Infinitely Many Derivatives: Variable Coefficient Equations
نویسندگان
چکیده
Infinite order differential equations have come to play an increasingly significant role in theoretical physics. Field theories with infinitely many derivatives are ubiquitous in string field theory and have attracted interest recently also from cosmologists. Crucial to any application is a firm understanding of the mathematical structure of infinite order partial differential equations. In our previous work we developed a formalism to study the initial value problem for linear infinite order equations with constant coefficients. Our approach relied on the use of a contour integral representation for the functions under consideration. In many applications, including the study of cosmological perturbations in nonlocal inflation, one must solve linearized partial differential equations about some timedependent background. This typically leads to variable coefficient equations, in which case the contour integral methods employed previously become inappropriate. In this paper we develop the theory of a particular class of linear infinite order partial differential equations with variable coefficients. Our formalism is particularly well suited to the types of equations that arise in nonlocal cosmological perturbation theory. As an example to illustrate our formalism we compute the leading corrections to the scalar field perturbations in p-adic inflation and show explicitly that these are small on large scales.
منابع مشابه
A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملExistence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملOn complex singularity analysis for some linear partial differential equations in C
We investigate the existence of local holomorphic solutions Y of linear partial differential equations in three complex variables whose coefficients are holomorphic on some polydisc in C outside some singular set Θ. The coefficients are written as linear combinations of powers of a solution X of some first order nonlinear partial differential equation following an idea we have initiated in a pr...
متن کاملExistence of infinitely many solutions for coupled system of Schrödinger-Maxwell's equations
متن کامل
Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کامل